We produce high-quality research inspired by bold ideas and underpinned by rigorous experiments.
Our work spans organic chemistry, materials science, membrane engineering, and technologies for
energy and the environment.
Multidisciplinary Research
Theme 1A: Flow Battery Energy Storage
1. Zuo P*., Ye C.*, Jiao Z., Luo J., Fang J., Schubert U. S., McKeown N. B., Liu T., Yang Z. & Xu T. Near-frictionless ion transport from rigid nanoconfinement by triazine framework membranes. Nature, 617, 299-305. DOI*Co-first authors contributed equally (2023).
2.Ye C., Wang A., Breakwell C., Tan R., Grazia Bezzu C., Hunter-Sellars E., Williams D. R., Brandon N. P., Klusener P. A. A., Kucernak A. R., Jelfs K. E., McKeown N. B. & Song Q. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nature Communications. 13, 3184, (2022). DOI
3.Ye C., Tan R., Wang A., Chen J., Comesana Gandara B., Breakwell C., Alvarez-Fernandez A., Fan Z., Weng J., Bezzu C.G., Guldin S., Brandon N.P., Kucernak A.R., Jelfs K.E., McKeown N.B. & Song Q. Long-Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime-Functionalized Ion-Selective Polymer Membranes. Angewandte Chemie International Edition., 61, e202207580 (2022). DOI
4. Zuo P*., Ran J.*, Ye C.*, Li X., Xu T., & Yang Z. Advancing ion selective membranes with micropore ion channels in the interaction confinement regime. ACS Nano, 18, 6016-6027. DOI*Co-first authors contributed equally (2024).
5. Tan R., Wang A., Ye C., Li J., Liu D., Dawich B.P., Petit L., Fan Z., Alvarez-Fernandez A., Furedi M., Wong T., Guldin S., Breakwell C., K. Jelfs, McKeown N. B. & Song Q. Thin film composite membranes with regulated crossover and water migration for long-life aqueous redox flow batteries. Advanced Science, 10, 2206888, (2023). DOI
6. Wang A., Tan R., Liu D., Lu J., Wei X., Alvarez-Fernandez A., Ye C., Breakwell C., Guldin S., Kucernak A. R., Jelfs K.E., Brandon N. P., McKeown N. B. & Song Q. Ion-selective Microporous Polymer Membranes with Hydrogen-bond and Salt-bridge Networks for Aqueous Organic Redox Flow Batteries. Advanced Materials, e2210098, (2023). DOI
7. Wong T., Yang Y., Tan R., Wang A., Zhou Z., Yuan Z., Li J., Liu D., Alvarez-Fernandez, A., Ye C., Sankey M., Ainsworth D., Guldin S., Foglia F., McKeown N., Jelfs K.E., Li X., Song Q. Sulfonated poly(ether-ether-ketone) membranes with intrinsic microporosity enable efficient redox flow batteries for energy storage. Joule, 9,2, (2025). DOI
8. Tan R., Wang A., Malpass-Evans R., Williams R., Zhao E.W., Liu T., Ye C., Zhou X., Darwich B.P., Fan Z., Turcani L., Jackson E., Chen L., Chong S.Y., Li T., Jelfs K.E., Cooper A.I., Brandon N.P., Grey C.P., McKeown N.B. & Song Q. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nature Materials, 19, 195-202, (2020). DOI
Theme 1B: Other Energy Conversion & Storage Technologies
9. Hao H., Rui T., Ye C. & Low. C. Carbon coated current collectors in lithium-ion batteries and supercapacitors: Materials, Manufacture and Applications. Carbon Energy, 6:e604, (2024). DOI
10.Tan R., He H., Wang A., Wong T., Yang Y., Iguodala S., Ye C., Liu D., Fan Z., Furedi M., He G., Guldin S., Brett D., McKeown N.B. & Song Q. Interfacial Engineering of Polymer Membranes with Intrinsic Microporosity for Dendrite-free Zinc Metal Batteries. Angewandte Chemie International Edition, e202409322, (2024). DOI
11. Wang A., Tan R., Breakwell C., Wei X., Fan Z., Ye C., Malpass-Evans R., Liu T., Zwijnenburg M. A., Jelfs K. E., McKeown N. B., Chen J. & Song Q. Solution-processable redox-active polymers of intrinsic microporosity for electrochemical energy storage. Journal of the American Chemical Society, 144, 17198−17208, (2022). DOI
Theme 2A: Membrane Processes for Liquid Separation
12. Tian X.*, Ye C.*, Zhang L., Sugumar M., Zhao Y., Margadonna S., McKeown N.B. & Tan R. Advancing membrane materials for efficient Li recycling and recovery. Advanced Materials, 37, 2402335. *Co-first authors contributed equally, (2025). DOI
13.Ye C.,An Q., Wu J., Zhao F., Zheng P. & Wang N. Nanofiltration membranes consisting of quaternized polyelectrolyte complex nanoparticles for heavy metal removal. Chemical Engineering Journal, 359, 994-1005, (2019). DOI
14.Ye C., Zhao F., Wu J., Weng X., Zheng P., Mi Y., An Q. & Gao C. Sulfated polyelectrolyte complex nanoparticles structured nanofiltration membrane for dye desalination. Chemical Engineering Journal, 307, 526-536, (2019). DOI
15. Chen Y., Shi W., Li S.*, Wang M., Hao S., Gong G, Ye C.*, McKeown N.B. & Hu Y.*. Rapid and precise molecular nanofiltration using ultra-thin-film membranes derived from 6,6′-dihydroxy-2,2′-biphenyldiamine. Advanced Functional Materials, 2406430, (2024). *Corresponding authors. DOI
16. Zhao F., Jiang Y., Liu T., Ye C.. Nanofiltration membrane based on novel materials. Progress in Chemistry, 30, 1013, (2018). DOI
17. Mi Y., Zhao F., Guo Y., Weng X., Ye C. & An Q. Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance. Journal of Membrane Science, 541, 29-38, (2017). DOI
18. Zheng P., Ye C., Wang X., Chen K., An Q., Lee K. & Gao C. Poly(sodium vinylsulfonate)/chitosan membranes with sulfonate ionic cross-linking and free sulfate groups: preparation and application in alcohol dehydration. Journal of Membrane Science 510, 220-228, (2016). DOI
Theme 2B: Nanomaterials Engineering for Membrane Processes
19. Wu J., Ye C., Zhang W., Wang N., Lee K. & An Q. Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration. Journal of Membrane Science 577, 104-112, (2019). DOI
20. Wu J., Ye C., Liu T., An Q, Song Y., Lee K., Hung W. & Gao C. Synergistic effects of CNT and GO on enhancing mechanical properties and separation performance of polyelectrolyte complex membranes. Materials & Design 119, 38-46, (2017). DOI
21. Zhao F., Ji Y., Weng X., Mi Y., Ye C., An Q. & Gao C. High-Flux Positively Charged Nanocomposite Nanofiltration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes. ACS Applied Materials & Interfaces 8, 6693-6700, (2016). DOI
Theme 3A: Membrane Material Design & Synthesis
22. Wu K. J., Tobin J., Ji, A., Shi Y., Ye C., Nichol G., Fuoco A., Longo M., Jansen J., McKeown N. B. The CF3TMS adduct of anthraquinone as a monomer for making polymers with potential as separation membranes. Polymer Chemistry, 15, 4312-4318, (2024). DOI
23. Amin M. K., Ye C., Pang S., Liu Y., Taylor D., Nicol G. S. & McKeown N. B.. Triptycene-like naphthopleiadene as a readily accessible scaffold for supramolecular and materials chemistry. Chemical Science, 15, 14968-14976, (2024). DOI
24. Kirk R. A., Ye C., Foster A. B., Volkov A. V., McKeown N. B. & Budd P. M. Mixed matrix membranes derived from a spirobifluorene polymer of intrinsic microporosity and polyphenylene networks for the separation of toluene from dimethyl sulfoxide. Arkivoc, 120-130, (2021). DOI